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Background
• Discussion of the issues in physical modeling

• Turbulence, not transition

• Emphasis on aircraft, and trend towards Certification by Analysis
• Better, faster designs with less wind-tunnel time and no surprises

• Cruise condition under rather good control
• Even buffet prediction is not impossible

• Hard regions of the envelope: high lift, stall, helicopters, landing gear…

• 2030 Roadmap was defined in 2014, with the following highlights:
• Improved Reynolds-Stress models, 2018
• Decision on continuing RANS research, 2019
• Hybrid RANS-LES of high lift at flight Reynolds number, 2020
• LES of high lift at flight Reynolds number, 2021
• Demonstration on exascale machine, 2023
• 30 exaflops by 2030
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Achievements, 2014 to 2019
• Reynolds-Stress Models established in DLR and NASA codes.

• Highly accurate? No. RSM’s do not consistently improve over eddy-viscosity 
models
• Especially SARC-QCR (-:

• Convergence can be difficult
• Models are almost static

• Brief efforts by Rumsey and Spalart to alter SSG part not fruitful
• See Eisfeld papers at this meeting

• This appears to settle the “2019 Decision Gate”

• The Turbulence Modeling Benchmark Discussion Group, in a white 
paper, objects to stopping RANS research (AIAA-2019-0317, Bush et al.)
• Cost of turbulence-resolving methods
• Wide expectations that Artificial Intelligence will revolutionize RANS field

• Steady RANS models and codes plagued by multiple solutions
• Worst symptom is “pizza slice” wide separation behind slat brackets
• Insensitive to model and algorithm, much more sudden than in wind tunnel
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Steady RANS

solution 1
Steady RANS

solution 2

AIAA 2018-1037. Cary, Mani, Yousuf, & Li

JAXA test

• The key question: can RANS models be made to work well enough?

• The phenomenon appears to be spurious, or at least premature

• It cuts across turbulence models and codes

• It is agreed that we don’t have grid convergence, but grid adaptation failed to suppress it

• Is it a “robust consequence” of the steady RANS equations?

• Do the models cause it, or are they only too weak to suppress it?

• Is the bracket region “violently 3D, essentially convecting and rotating vorticity?”

The Slat-Bracket Problem (“Pizza Slice”) 



Pressure-Gradient Term in Momentum Equation

Time-average of a URANS



Reynolds-Stress Term in Momentum Equation

Time-average of a URANS



Turbulence Models in Simple Flow

Figure from TMR
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Preliminary Success of DDES at 3rd High-Lift Workshop

DDES

snapshot

DDES

averaged

AIAA 2018-1037. Cary, Mani, Yousuf, & Li

JAXA test

•Turbulence-resolving approaches appear immune to pizza slice issue
• DES, WMLES, LBM-VLES…

• They tend to give better lift than RANS near Clmax



Rotation/Curvature Corrections and Vortices
• Paper by Spalart and Garbaruk on “mature vortices”

• Typical RANS models sustain turbulence: 𝜈𝑡 ∝ Γ

• The flow develops a circulation overshoot
• Due to conserving angular momentum
• As shown by Govindaraju & Saffman, in 1971

• The overshoot means the creation of opposite 
vorticity, which seems unphysical
• The vorticity is also discontinuous (in RANS)

• SARC and SSTRC suppress the eddy viscosity
• SA-R reduces nt, but does not go fully laminar

• George Huang has a stronger version of SA-R
• It is better in the vortex, and rotating pipe

• This validation case seems clear, although not major
• This is “classical” turbulence modeling
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CFD Vision 2030 Roadmap
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2014-2019 Activity: Wall-Modeled Large-Eddy Simulation



SGS Eddy Viscosity of Vreman Model
• Work of O. Lehmkuhl, Alya code



SGS Eddy Viscosity of Smagorinsky Model
• Work of O. Lehmkuhl



SGS Eddy Viscosity of ILSA Model
• Work of O. Lehmkuhl with U. Piomelli



Vorticity with Vreman Model



Vorticity with Smagorinsky Model



Vorticity with ILSA Model



• Work of K. Goc and P. Moin

 CharLES code, Vreman model

 Slip WM

Vorticity

Velocity

SGS Eddy Viscosity



DDES Eddy Viscosity
• Work of R. Balin and K. Jansen, PHASTA code



DDES Vorticity

u/Uinf

• Balin, 
Jansen, 
PHASTA



• Work of T. Knacke and F. Thiele (2013-2162)

• DDES in ELAN code

• Width 3.3% of chord (30P30N)

• 9M points in cove

• Time sample 70,000 steps, T ~ 8 c / U

• Real problem is hundreds of times larger
• Lemkuhl had 70M points and 193M 

elements for the half airplane

Narrow Slice Simulation

l2

wz nt/n



Artificial Intelligence in Turbulence Modeling
• AI has made great strides in extremely difficult areas such as translation

• Tools proposed here include Machine Learning, Big Data, Deep Neural Networks, etc.
• Many paper titles sound like: “Physics-Informed Machine Learning Approach for Augmenting
Turbulence Models: A Comprehensive Framework”

• RANS modeling arguably has stagnated for decades
•In Aerodynamics. Not as much in internal flows?
•It’s possible that RANS modeling faces a “Fundamental Paradox” and has an “Accuracy Barrier,” 
and the community’s expectations/the demands of CFD are not realistic (local model formulation)
•The SA and SST models are very useful, but not founded on theory or DNS

• There is logic in hoping AI can end the stagnation, with two threads:
• 1. New thinking, new terms, new physics, some based on DNS data
• 2. More powerful optimization of existing models over a wide range of flows

• Should this include “historical” modelers, or start from a “clean sheet of paper?”
• Many “clean sheet” efforts violate Galilean Invariance, or have more subtle defects
• A very clear “mission” must exist
• Very few code-ready new models, or model versions, have been produced so far

• Except by Weatheritt & Sandberg, using Genetics of the equations!
• Note that Symbolic Manipulation of equations has not caused much progress

• A large European proposal, HiFi-TURB of Hirsch & Haase, hinges on this hope
•Kick-off meeting in July! Historical modelers very much included, and NASA
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Summary
• Since 2014, our community’s work has been collaborative and smart enough

• Experimentalists, numerical types, and modelers

• Budgets are not matching the value of and the promises made for CFD

• The growth of computing power has slowed badly

• For high-lift, modeling can still hide behind the lack of grid convergence
• Yet, it is certain modeling will become the “tent pole,” in the steady RANS setting

• Traditional turbulence modeling is challenged from two sides:
• Turbulence-resolving simulations

• These are promising, but far from industry practical. We need many exaflops

• The flow fields have some very “interesting” features…

• We contend that DES is cleaner, and will deliver well before WMLES and VLES

• Artificial intelligence
• We contend that this work is still in its infancy, and much of it is simply unsuccessful

• A lot of “adult supervision” is needed

• Did we the “adults” fail to explain modeling (too bad Wilcox’s book is now rare)?

• Several of the Vision 2030 milestones will be missed
26


