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In 2021, the AIAA CFD Vision 2030 IC Roadmap subcommittee released a report [1] reviewing progress 

and challenges associated with the technology items identified on the Roadmap from its initial release 

through 2020.  This document identified that while significant progress had been made on key 

technology demonstration items, many of the original milestones were behind schedule.  With some of 

the findings since 2014, some of these milestones are less critical at present and new items of study 

have been identified.  This report was followed by a companion paper [2] presented at AIAA Aviation 

that provided an updated Roadmap with shifted milestones and the addition of new technology 

milestones as well as enhanced Domain definitions.  This paper also provided a TRL level scale to 

measure technology development appropriate for this type of community-level activity and performed 

an initial assessment of the tasks.  More detailed descriptions were also provided to assist in quantifying 

progress. 

This activity is continued by the roadmap subcommittee providing annual reviews of progress to assist in 

identifying critical technologies that need additional focus and to help promote successful progress on 

other tasks.  Overall, the pandemic appears to have reduced the dissemination of information during 

this year, with seemingly less progress than typically expected.  Many contacts have chosen to defer 

publications until 2022. The following sections outline key progress made toward the milestones in each 

Domain as identified by surveys of experts across the aerospace industry and literature reviews, 

particularly across AIAA publications. The authors acknowledge that this process is not complete and 

appreciate any feedback and assistance to improve these surveys going forward. We apologize for any 

omissions. 

While not yet in an implementation phase, another CFD Vision 2030 IC activity highlighted three Grand 

Challenge problems at SciTech 2021.  These activities provide another mechanism to rally progress 

toward achieving progress toward the Vision.  These Grand Challenge problems outline a series of 

analyses and validation experiments to advance the state of the art in commercial high lift prediction 

[3], engine analysis [4], and space vehicle design [5]. These problems require community support to 

progress and offer the potential to demonstrate CFD capabilities at unprecedented levels and build 

confidence in the applications.    

High Performance Computing 
The aerospace CFD community has continued to see modest activity toward the HPC thrust of the 

roadmap, primarily aligned with more conventional, evolutionary hardware technologies.  In addition to 

optimization efforts for CPU-based computing, development teams have continued to focus on porting 



strategies aimed at GPUs.  These often include CUDA-based implementations targeting NVIDIA 

platforms, as well as portable abstractions such as the OpenACC approach based on the use of compiler 

directives.  Examples include the work described in Refs. [6-16]. At leadership-class scale, the 

implementation demonstrated in Ref. [17] has enabled reacting-gas simulations on billions of mesh 

elements using 16,000 GPUs to achieve computational throughput equivalent to that of several million 

CPU cores.  Finally, efforts associated with the revolutionary systems track of the roadmap continue to 

pursue low TRL research, which may take ten years or more to yield practical approaches for the 

aerospace CFD community. 

There has been relatively little change amongst the upper tier of the Top500 rankings. Two new systems 

have appeared in the Top 10 over the past year, each relying on NVIDIA Tesla A100 GPUs. However, the 

next couple of years will likely see substantial shakeups in the rankings, with three exascale-class 

systems – Frontier, Aurora, and El Capitan – slated to arrive at the Department of Energy, and several 

new European systems targeted to achieve several hundred petaflops each.  These new systems will 

generally leverage AMD and NVIDIA GPUs, with Aurora based on Intel GPUs. 

  

Physical Modeling 
Assessment and improvement of smooth body separation prediction capability is a current focus of 

RANS modeling. A workshop is planned for SciTech 2022 to address this key roadmap issue [18]. 

Significant effort is currently focused on a Gaussian speed bump configuration. Experimental 

investigations, LES and DNS are in progress [19,20]. While there is significant effort to assess the 

accuracy of RANS models for a wide range of applications, there is limited evidence of major advances in 

RANS modeling capability [21]. 

Improvements in wall modeled large eddy simulation (WMLES) and demonstrations of WMLES 

capabilities on complex configurations were reported in 2021. Loazano-Duran, Moin and Park [22] 

evaluate WMLES accuracy in 3-D boundary layers. This work shows that WMLES can be applied to flows 

with highly 3-D boundary layers, but some error is introduced with a 2-D-based wall model. Yu, Yan and 

Milani [23] evaluate the matching point requirements for WMLES and advocate a method that allows 

the first mesh cell as a matching point. Macdonald and Candler [24] apply WMLES to a hypersonic flow 

and assess its performance. Gross, Castillo and Lee evaluate WMLES for supersonic boundary layers [25]. 

The expanded applications and evaluations of WMLES for complex geometries indicate expanded use 

and maturation of this modeling approach. 

The use of DNS and LES methods for obtaining high fidelity turbulence data for use as benchmark data 

for RANS method evaluation continues to expand. In addition to the analyses of the speed bump 

[19,20,26,27], Nicholson, Huang, Duan, Choudhari and Bowersox [28] used DNS to study streamline 

curvature in a Mach 5 flow. They evaluated RANS model predictions of turbulence quantities, solving 

turbulence model equations for the DNS based velocity field. Gaskin, Poggie and Blaisdel [29] evaluated 

roughness patterns in the low end of the fully rough regime in a Mach 2 boundary layer.  Bowyer, 

Cantwell, Onn and West [30] evaluated wingtip vortex flowfields with LES and compared several RANS 

models to the simulation results. Bhagwandin and Martin [31] simulated the shock boundary layer 

interaction for a hollow cylinder with a flared cone at Mach 10 with LES and compared to test data. This 

configuration is frequently used as a RANS method benchmark.  



The investigation of machine learning for the improvement of physical models is growing and the range 

of applications is expanding. This is an emerging area that was not mentioned in the original CFD 2030 

report. While this is an area with a high level of activity, these methods have mostly been demonstrated 

on simple, canonical flows, mostly 2-D or axisymmetric. Pochampalli, Ozkaya, Zhou, Suarez and Gauger 

[32] used machine learning to modify the production term in the Spalart Almaras turbulence model. 

They demonstrated their method on NACA 0012 and NACA 0021 airfoils. They also used Machine 

learning to modify the S-A turbulence model to improve predictions of the separated flow over the 

NASA hump model [33]. A team of researchers from New Mexico State University and the University of 

Arizona applied machine learning to estimate the amplification factor for transition prediction. The 

machine learning estimates were integrated into Coder’s transport-based transition model and tested 

on an airfoil and a low pressure turbine cascade [34]. Machine learning was also applied to the modeling 

of chemical kinetics [35]. 

Recently a five-year assessment of CFD 2030 milestones in the Physical Modeling area was completed. 

Progress in transition prediction was highlighted as an area lagging the original roadmap milestone. The 

recent expansion in efforts to develop robust and accurate transport equation-based transition 

prediction models continued in 2021. Groot, Patel, Saiyasak, Coder, Stefanski and Reed [36] assessed 

the Amplification Transport Model of Coder et al. [37] for transition prediction in hypersonic flow. While 

the method showed promising results, significant discrepancies between model predictions and 

parabolized stability equation predictions are evident for some flows. Interest in this area is also 

exemplified by the work of Lee and Baeder [38] who calibrate a one equation transition model for the S-

A RANS model. Efforts to simulate transitional flow with DNS continue. The study by Hartman, Hader 

and Fasel [39] of transition on a blunt cone at Mach 6 with LES is an example of ongoing efforts in this 

area. 

It is hard at the present time to see any breakthroughs in physical model development in 2021. 

However, it is clear that there has been evolutionary progress and maturation of methods over the past 

year. The upcoming NASA sponsored symposium, “Turbulence Modeling: Roadblocks, and the Potential 

for Machine Learning” [40], will provide an opportunity to assess progress and highlight promising 

research directions with potential to advance turbulence and transition prediction capabilities.  

Algorithms 
Making improvements to the robustness and efficiency of higher order schemes, particularly for time-

dependent simulations is a continuing theme in the Algorithms Domain. Fidkowski [41] performed a 

rigorous stability analysis of the discontinuous Galerkin (DG), hybridized discontinuous Galerkin (HDG), 

and embedded discontinuous Galerkin (EDG) to demonstrate that while the degree of freedom count 

decreases significantly with HDG and EDG, so do their stability properties with Jacobi solvers, 

particularly for advection dominated problems.  Franciolini et al. [42] showed that more advanced 

preconditioning methods including multigrid can result in significantly improved convergence properties 

for higher order systems.  Yoon and Maviplis [43] compared the performance of space time DG 

formulations with fully implicit Runge Kutta time integration methods and illustrated the equivalence 

between these schemes as previously discussed in Huynh et al. [44] Using enstrophy histories for 

multiple unsteady LES benchmark problems, Wang [45] was able to provide evidence of significant 

performance improvements of higher order methods at comparable accuracy levels. Improvements 



were also reported for traditional second-order scheme performance by fine tuning the nonlinear solver 

algorithm HANIM [46] as well as through discretization adjustments for viscous terms [47]. 

Motivated by scatter in the second aeroelastic prediction workshop, an NIPC analysis of a 2D transonic 

aeroelastic problem [48] suggests that plausible uncertainties in flow parameters and geometry 

imperfections can lead to large scatter in flutter speed.  This step highlights the benefits of including UQ 

analysis even in deterministic analysis scenarios such as computational workshops.  Taylor and Rumsey 

[49] proposed a more general perspective for validation experiments that has larger synergy between 

the physical test and the numerical simulation with an intended end result of identifying the predictive 

capabilities of CFD. 

Geometry Modeling and Mesh Generation 

Geometry Modeling 
The rectangular nature of the parameterization underlying the B-spline techniques that form the 

backbone of contemporary MCAD modelling systems is the source of many of the challenges faced in 

incorporating BREP models into computational simulation workflows. (The rectangular topology 

necessitates the frequent use of surface-to-surface intersections that, for reasons of robustness and 

convenience, are approximated, rendering the regions of the BREP in the immediate vicinity of such 

intersections geometrically ambiguous and nongeometrically-watertight.) To address this well-known 

limitation, researchers at the University of Groningen have developed a generalized B-spline 

construction that extends uniform, bicubic B-splines to multisided regions spanned over extraordinary 

vertices in quadrilateral meshes [50]. The resulting multisided surfaces are C2 continuous internally and 

connect with G2 continuity to adjacent regular and other multisided B-spline patches.  

The lack of geometric watertightness exhibited by most MCAD geometry models in the immediate 

vicinity of surface-to-surface intersections creates challenges for mesh generation, especially adaptive 

mesh refinement where, in regions of high flow gradients, the edge lengths of cells can be comparable 

(or even smaller) than the local lack of geometric watertightness in the BREP. In recent years, much 

effort has been expended toward reducing the manual effort required to address the attendant 

challenges. Park et al. [51] review some of the techniques that have recently been embedded in mesh 

generation software. These include (i) using scaffolds built from a combination of the topological and 

geometrical entities in the BREP to provide a watertight basis for meshing; (ii) bridging the geometric 

gaps between topological and parametric geometric BREP entities with local facetted geometric entities; 

(iii) using an existing linear mesh to building a cubic surrogate quilt; (iv) superimposing a displacement 

field computed at the intersections, but smoothed over the remainder of the boundary, onto the 

original BREP to reduce the lack of geometric watertightness. None of the techniques rely on a priori 

knowledge of the tolerancing scheme used to build the source BREP, using displacements between the 

(transmitted) edges and (in situ computed) p-curves to guide their mitigation schemes. In each case, as 

far as possible, links between the mesh and the underlying BREP running parameters are maintained, 

thereby facilitating standard queries pertaining to surface properties (e.g., curvature) that may be used 

to guide the mesh generation (and/or refinement) process.    

Untraditional techniques continue to demonstrate improved capabilities for CFD applications especially 

in terms of eliminating preprocessing steps like geometry model repair preparation. Immersogeometric 

analysis (IMGA) [52], inspired by isogeometric analysis (IGA), make direct use of the BREP of a complex 



model by immersing it in a non-body-fitted discretization of the fluid region. Geometry model cleanup is 

not required and the meshing burden is vastly reduced. As demonstrated by Hsu [53], a mesh in excess 

of 11 million cells can be generated in “seconds” and the resulting mean flow computed about a 

complex geometry model (a tractor) is reported as comparing favorably with that derived using a body-

fitted mesh. 

Mesh Generation 
Recent work demonstrated important steps toward improved robustness and automation of geometry 

processing and mesh generation methods on complex geometries. These methods often rely on field 

calculations (e.g., cross fields, sizing fields, deformation) that in turn require their own meshing step, 

which can lack robustness. Work by Sawhney & Crane [54] demonstrates how to create certain classes 

of these fields robustly on poor-quality geometry without any background mesh. 

An example of a framework for more closely coupling the mesh and the geometry is MeshLink, an open-

source project described by Wyman et al. [55].  MeshLink consists of two components. First, a schema 

has been defined for describing the one-to-many associativity of a surface mesh to curves and surfaces 

in the geometry model. Second, a high-level library provides a kernel-agnostic wrapper for simplifying 

the necessary geometry queries to a downstream consumer (e.g., flow solver). 

The Exascale Computing Project [56] and the Center for Efficient Exascale Discretizations [57] have 

produced a paper to summarize recent research efforts and accomplishments [58]. The paper’s 30 

authors, representing two national labs and five universities, state that they use high-order elements 

and “traditional” refinement of unstructured meshes to increase the degrees of freedom in the finite 

element domain versus “brute force” refinement of a linear mesh. This general trend is observed 

throughout applied CFD; instead of simply using meshes with more and more mesh points, AMR is used 

to efficiently resolve the mesh only where needed.  

That is not to say that work on exploiting HPC resources to improve meshing performance has ceased. 

The software Gmsh has reported increased performance with the addition of multithreading [59]. On 2x 

AMD EPYC 64-Core (127 cores), Gmsh generated 663 million tetrahedra in less than five minutes around 

an aircraft and 721 million tetrahedra in just over two minutes for another geometry model.  

The application of mesh adaptation in production workflows has been used to evaluate CFD as a 

surrogate for Mach 2.4 to 4.6 wind-tunnel testing [60]. The evaluation included expert-crafted meshes 

and multiple flow solvers. Simulations of the high-speed leg of the wind tunnel with an empty test 

section [61,62] and models installed with support hardware [63-65] created an extreme range of 

geometric scales. Simulations of vortices generated by structures upstream of the wind tunnel throat 

and the corners of the throat were propagated through the sonic throat to the supersonic test section. 

These simulated vortices impacted the model and support hardware to provide context for previously 

unexplained measurement anomalies. The Space Launch System (SLS) model and support hardware had 

high-fidelity geometric detail [65], which indicates progress in accommodating complex geometry 

sources in production CFD environments with mesh adaptation. 

Generating high-quality quad meshes is still an area where robustness is currently lacking in current 

pipelines. Work by Pietroni et al. [66] appears to show a step forward in this area. 

 



Knowledge Extraction 
In 2021, there has been considerable effort in the use of Machine Learning (ML) methods and Data 

Analytics (DA) to aid the engineer in extracting knowledge from large scale CFD simulations. Brunton 

et.al. [67] described in a review article how machine learning methods will influence Aerospace 

Engineering. One of the opportunities for machine learning is in “human–machine interactions 

(advanced design interfaces, interactive visualizations,…” where ML is used to inform uncertainty 

quantification (UQ), feature extraction and knowledge extraction from large scale CFD simulations. 

Duraisamy [68]  gave a review paper where he presented his “Perspectives on machine learning and its 

use to augment RANS and LES modeling of turbulence.” As computer systems have grown and with the 

availability of ML software such as TensorFlow [69], there has been a growth in the use of these 

methods. Duraisamy and his colleagues [70] have been developing turbulence models informed from 

ML methods. Fukami, Fukagata and Taira [71] used a data reconstruction method with supervised 

learning to recover high-resolution turbulent flows from coarse flow data in space and time. Blonigan et 

al. [72] use a DA method, Conservative Manifold Least-Squares Petrov-Galerkin Projection, to form a 

reduced order model.  

Uncertainty Quantification (UQ) is one of the drivers for the development of the ML and DA methods.  

Model input uncertainty propagation is required; however, it is presently intractable to assess on the 

high fidelity CFD representative of the CFD 2030 Grand Challenges and in vehicle design studies. 

Surrogate/Reduced Order Models using DA and ML may make this type of analysis tractable. Good user 

interfaces are needed to enable engineers to easily manage and extract knowledge from the large 

amount of information that will be generated (1000s of 10B cell unsteady runs by 2030).  Pullan et al. 

continue development of DBslice as a step toward this. In 2019, he presented the use of a web-based UI 

using open source software and developed a UI based upon ML and augmented reality [73]. In 2022, he 

presented how ML methods can be used to guide and inform the engineer in a CFD study of high-fidelity 

turbomachinery simulations [74].  

In 2022, we anticipate continued progress in the development and application of DA and ML methods to 

further enhance our ability to extract large scale CFD simulations. It has been recently announced that 

Wang (University of Kansas) in partnership with NVIDIA and CADENCE was awarded an INCITE computer 

allocation on Summit [75] to perform high fidelity high order simulations. To this date, they have 

executed a 73 billion degree of freedom simulation on 5th-order elements. DA and ML methods and 

improved visualization and computational environments will be needed to extract knowledge from 

these large datasets. 

MDAO 
There have been many efforts towards increased discipline coupling for air vehicle design, a selection of 

which include aeropropulsion, aerothermoelasticity, thermal management, and control. Yildirim et al. 

[76] developed two approaches for fully-coupled aeropropulsion modeling. The first utilizes source 

terms in an actuator zone and the second facilitates coupling through boundary conditions. Both 

approaches couple tightly with a 1D thermodynamic cycle (in this case pyCycle) in order to account for 

the propulsion coupling on the aerodynamic model. Smith et al. [77] extended the FUNtoFEM and MELD 

aeroelasticity frameworks to include heat transfer for aerothermoelastic coupling and adjoint-based 

gradient evaluation. A simple gradient-based aerothermoelastic design optimization of a flexible, 



thermally-conducting panel in supersonic flow was demonstrated. Shi et al. [78] demonstrated a 

methodology for automatically populating aircraft thermal management system architectures. They 

demonstrated automatic generation of conventional architectures given conventional requirements, but 

also demonstrated unintuitive and novel thermal management layouts for a novel vehicle concept. 

Repolho Cagliari et al. [79] present a method for simultaneous plant and control optimization of chaotic 

dynamical systems utilizing the least-squares shadowing adjoint. Falck et al. [80] published dymos, a tool 

built on OpenMDAO for optimal control of multidisciplinary systems. dymos could be used in a broader 

context of codesign, where control is one piece of a broader (multidisciplinary) design optimization. 

Finally, two summaries were presented on large-scale collaborative programs in the area of 

multidisciplinary design optimization. Méheut [81] gave a summary on the main results of the EU 

MADELEINE project focused on strengthening capabilities and use of multiphysics adjoint solvers for 

design of aircraft systems and subsystems. Görtz et al. [82] gave an overview of results from the DLR 

project VicToria (Virtual Aircraft Technology Integration Platform) working toward multifidelity, 

multidisciplinary design optimization of long-range passenger aircraft. 

Recent work in the area of uncertainty quantification (UQ) for air vehicle design optimization 

demonstrated improvements in multidisciplinary frameworks accounting for UQ as well as improved 

scalability for UQ-enabled design optimization. Ghosh and Mavris [83] present a framework for 

uncertainty-based multidisciplinary analysis (UMDA) that admits concurrent disciplinary uncertainty 

propagation while accounting for the dependence of coupling variables. This contrasts with UMDA 

processes that decouple uncertainty propagation, which may cause loss of statistical dependencies 

between coupling variables. In order to alleviate the computational expense of many random 

parameters in reliability-based design optimization (RBDO), Clark et al. [84] treated normally distributed 

and non-normally distributed random parameters and stochastic design variables in separate manners. 

Specifically, normally distributed random parameters were characterized via nondeterministic kriging 

nonstationary variation estimation, while non-normal parameters were propagated utilizing a surrogate-

based method. Utilizing the developed approach, an RBDO solution for a 10-dimensional nonlinear 

thermoelastic aircraft panel was obtained in a tractable manner without gradient information. 

Assessment 
Based on the assessments described above and consultation with subject matter experts across the 

aerospace industry, the Roadmap Subcommittee assigned approximate Technology Readiness Level 

(TRL) rankings for each of the milestones.  Both the assessment and the scale used for this assessment 

are included in the Appendix.  Overall, these assessments reflect minimal changes from 2020.  It is not 

clear if this apparent lack of progress is due to near-term perception bias, incomplete information, or 

actual minimal progress in the technology areas associated with the milestones since the last 

assessment.  It is also important to recognize that these TRL levels primarily address the availability of a 

particular technology and not necessarily its appropriateness for particular classes of simulations. 

One of the objectives of this report is to identify overall progress toward the CFD Vision 2030 as has 

been described in the preceding sections. It is also necessary to identify potential risks that may prevent 

the Vision from being realized because of insufficient observed progress toward the objectives and 

milestones.  It is recognized that both the technology development required and available time to 

achieve the milestone are key considerations, as well as the degree to which the technology is critical to 

the overall Vision.  As an example, advances in high performance computing are an important 



foundation to the Vision, but there continues to be steady progress on this front in both traditional and 

revolutionary concepts such that this technology is not seen as a risk item at present.  It is also 

recognized that some technologies (Reynolds stress modeling, for example) may be behind expectations 

on the Roadmap, but are not presently considered to be key to the overall Vision as alternatives exist. 

Finally, there are several milestones requiring an extremely large scope of activity and/or computing 

such as a 100B cell mesh and 10B point unsteady visualization. These milestones are believed to be 

within reach by an expert with extreme effort on leadership-class computing but have not yet been met 

and are not practical for routine application.    

Multiple approaches have been utilized to identify the technology risks including projection of TRL 

progress toward achieving the milestone and assessment/review by the subject matter experts involved 

in this report.  An initial list of 14 items were identified by assuming a TRL increase of 1 per year and 

assessing if the technology had reached a TRL level of 6 (demonstrating the practicality of the 

technology) by the milestone date.  The items were then assessed to determine if steady progress was 

being made or if technology development toward objectives had stagnated.  Finally, the stagnated 

technology items were prioritized based on their identification as being on the critical path toward 

reaching the primary objectives of the Vision. Based on this approach, the following items are currently 

deemed to be at risk:  

• Inclusion of more detailed chemical kinetics in computations and advanced turbulence-

combustion interaction models, particularly LES simulations where the flamelet model is not 

sufficient, is believed to be a critical step toward achieving the enhanced combustion modeling 

expected by the Vision. 

• Robust and distributed geometry modeling and interpretation is required across all meshing 

thrusts and is a common thread that could slow development if outstanding issues are not 

resolved. Adaptive meshes may drive mesh cell sizes below the level of tolerances used to 

assemble the geometry model. High-order mesh curving will encounter geometry model 

trimming issues. Meshing on HPC platforms will require distributed geometry and lightweight 

geometry access across thousands of compute cores.  

• Defining and accepting standards for facilitating coupling among discipline analyses is a critical 

step for reaching MDAO milestones.  The coupling standards need to include API definitions and 

data requirements for both high-fidelity simulation and other model forms for effective 

interfacing not only of values, but also sensitivities for both optimization and robustness 

assessment. 

• Uncertainty quantification and propagation methods through CFD are important to establish 

confidence in the simulation results, especially when the results are being used in advance of 

configuration testing to make decisions.  

While increasing the development rate of these items is important to achieving the Vision, there may be 

other technology risks that the selection process has inadvertently omitted. The present milestones 

identified on the Roadmap tend to reflect specific technical approaches rather than the underlying 

technical requirement. It may be that the identified approach will not sufficiently address the 

requirement, even when the associated milestone is met.  With this in mind, there are two 

considerations as we move forward.  First, it may be important to also measure trust or confidence 

levels for existing roadmap technologies since the TRL measurements are primarily limited to 



development and adoption.  Second, as new approaches are developed and published, an emphasis 

should be placed on meeting the underlying needs of the Vision and avoiding a positive-selection bias 

because of a subset of results that may not be appropriate for the entire class of targeted objectives.  

Ultimately, developed models should be validated and predictive with relevance to the broader vision 

objectives.  Furthermore, technology development requires experimental confirmation and established 

community confidence to reach the objectives of the Vision.  Future Roadmap updates should assess 

approaches for measuring progress toward key needs of the Vision in addition to development of 

specific potential technology enablers.   It may also be necessary to add intermediate milestones for 

some of the larger technology advances scheduled near the year 2030 to enable a more accurate 

assessment of progress at that time. 
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Appendix: Milestones and TRL rating history 
 

Table 1.  Technology Readiness Level assessment of milestones. 

Domain/ Timeline / Milestone 

Milestone 

year 

2020 

TRL 

2021 

TRL 

HPC 
 

   
 

CFD on massively parallel systems    
  

Demonstrate implementation of CFD algorithms for extreme 

parallelism in CFD codes (e.g., FUN3D) 
2019 6 6 

  
Demonstrate efficiently scaled CFD simulation capability on an 

exascale system 
2024 0 0 

  
30 exaFLOPS, unsteady, maneuvering flight, full engine simulation 

(with combustion) 
2030 0 0 

 
CFD on Revolutionary Systems (Quantum, Bio, etc.)    

  
Demonstrate solution of a representative model problem 2023 2 2   
Demonstrate solution of a representative model problem 2027 0 0 

Physical Modeling    
 

RANS    
  

Improved RST models in CFD codes 2016 7 7   
Integrated transition prediction (Tollmein-Schlichting modeling) 2017 6 6   
Integrated transition prediction (non-TS) 2027 3 3   
Highly accurate RST models for flow separation 2025 2 2   
Demonstration of machine learning to simulation of complex flow 

regime 
2025 1 3 

 
Hybrid RANS/LES 

   

  
Integrated transition prediction 2025 2 2   
Unsteady, complex geometry, separated flow at flight Reynolds 

number (e.g., high lift) 2023 4 4 
 

LES 
 

   
  

Integrated transition prediction 2025 2 2   
WMLES/WRLES for complex 3D flows at appropriate Re 2023 5 5   
Unsteady, 3D geometry, separated flow (e.g., rotating 

turbomachinery with reactions) 
2027 3 3 

 
Combustion    

  
Chemical kinetics calculation speedup 2017 3 3   
Chemical kinetics in LES 2021 4 4   
Multiregime turbulence-chemistry interaction model 2025 3 3   
Unsteady, 3D geometry, separated flow (e.g., rotating 

turbomachinery with reactions) 
2027 3 3 

   
   



Algorithms 
 

   
 

Convergence/Robustness    
  

Automated robust solvers 2022 7 7   
Unsteady, complex geometry, separated flow at flight Reynolds 

number (e.g., high lift) 
2023 7 7 

  
Scalable optimal solvers 2021 6 6   
Improved discretizations for scale-resolving methods (low-

dissipation, HO,…) 
2024 5 5 

  
Accurate and robust methods for long time integration 2026 2 2   
Production scalable entropy-stable solvers 2029 3 3  

Uncertainty Quantification (UQ)    
  

Characterization of UQ in aerospace 2023 4 4   
Reliable error estimates in CFD codes 2025 5 5   
Uncertainty propagation capabilities in CFD 2022 4 4   
Identification of tail events/probabilities from CFD codes 2027 3 3   
Large scale stochastic capabilities in CFD 2030 0 0 

Geometry Modeling and Mesh Generation    
 

Geometry Modeling    
  

Quantified, reversible data transfer demonstrated between 

opaque and open geometry model representations. 
2023 5 5 

  
Associative equivalence demonstrated for OML manipulation 

schemes. 
2025 0 3 

  
Distributed, open geometry representation platform established 2027 0 2   
Robust, quantifiable multidisciplinary data exchange supported by 

open data standard. 
2029 0 2 

 
HPC Meshing    

  
Large-scale parallel mesh generation 2020 5 5   
Generate a 100 billion cell, fit-for-purpose volume mesh. 2025 1 1   
Generate a 1 trillion cell, fit-for-purpose volume mesh. 2030 1 1  

Fixed Meshing    
  

Tighter CAD coupling 2015 9 9 
  

CAD coupling available in commercial grid generation 2023 5 5 
  

Automatic generation of suitable mesh on complex geometry on 

1st attempt. 
2021 4 4 

  
Automatic generation of a family of meshes about a complex 

configuration. 
2023 4 4 

 
Adaptive Grid    

  
Production AMR in CFD codes 2016 5 5   
Adaptive meshing techniques will accept typical assembly 

tolerance levels and unfavorable B-Rep topologies to accept a 

pragmatic interpretation of geometry. 

2023 0 4 

  
Adaptive curved meshing to support higher-order solvers will be 

available from multiple implementations. 
2026 0 3 



  
Accurate CFD solutions are verified by asymptotic convergence 

rate demonstration or low variation between independent 

implementations. 

2028 0 3 

  
Adaptive mesh computations displace fixed meshes as the default 

and practitioners will rarely visualize the mesh directly. 
2030 0 2 

Knowledge Extraction    
 

Integrated Databases    
  

Simplified data representation 2017 3 3   
Accepted data fusion techniques 2026 3 3   
Creation of real-time multifidelity database: 1000 unsteady CFD 

simulations plus test data with complete UQ of all data sources 
2025 2 3 

 
Visualization    

  
On demand analysis/visualization of a 10B point unsteady CFD 

simulation 
2022 4 4 

  
On demand analysis/visualization of a 100B point unsteady CFD 

simulation 
2025 2 2 

MDAO 
 

   
  

Define standard for coupling to other disciplines 2016 4 4   
High fidelity coupling techniques/frameworks 2017 4 4   
Robust CFD for complex MDAs 2019 4 4   
Incorporation of UQ for MDAO 2025 2 2   
MDAO simulation of an entire aircraft (e.g., aeroacoustics) 2027 3 3   
UQ-enabled MDAO 2030 1 1   
Full vehicle coupled analytic sensitivities, including geometric and 

subsystems 
2025 4 4 

  
Full Vehicle coupled analytic sensitivites for chaotic systems 2030 0 0 

 

  



 

Table 2. Technology Readiness Level (TRL) assessment scale. 

TRL Definition DOD DAG Description Present Purpose 

1 

Basic Principles observed and 
reported 

Lowest level of technology readiness. Scientific 
research begins to be translated into applied 
research and development. Examples might 
include paper studies of a technology’s basic 
properties. 

High quality conference article 
describing concept/underlying 
principles 

2 

Technology concept and/or 
application formulated 

Invention begins. Once basic principles are 
observed, practical applications can be 
invented. Applications are speculative and 
there may be no proof or detailed analysis to 
support the assumptions. Examples are limited 
to analytic studies. 

High quality journal article results from 
feasibility study. 

3 

Analytical and experimental 
critical function and/or 
characteristic proof of concept 

Active research and development is initiated. 
This includes analytical studies and laboratory 
studies to physically validate analytical 
predictions of separate elements of the 
technology. Examples include components that 
are not yet integrated or representative. 

Article or high-quality paper 
demonstrating prototype of capability 
(limited scope) 

    

4 

Component and/or breadboard 
validation in laboratory 
experiment 

Basic technological components are integrated 
to establish that they will work together. This is 
relatively “low fidelity” compared to the 
eventual system. Examples include integration 
of “ad hoc” hardware in the laboratory. 

Capability evaluated/implemented by a 
CFD team; basic demo 

5 

Component and/or breadboard 
validation in relevant 
environment 

Fidelity of breadboard technology increases 
significantly. The basic technological 
components are integrated with reasonably 
realistic supporting elements so it can be tested 
in a simulated environment. 

Successful demonstration of capability 
on a production-level case 

6 

System/subsystem model or 
prototype demonstration in a 
relevant environment 

Representative model or prototype system, 
which is well beyond that of TRL 5, is tested in a 
relevant environment. Represents a major step 
up in a technology’s demonstrated readiness. 

Capability used multiple times by a 
single CFD team for purposes beyond 
demonstration (application) 

    

7 

System prototype demonstration 
in an operational environment 

Prototype near, or at, planned operational 
system. Represents a major step up from TRL 6, 
requiring demonstration of an actual system 
prototype in an operational environment such 
as an aircraft, vehicle, or space. 

Use/Evaluation of capability by 
independent organizations (perhaps in 
different implementations). This is 
typically inspired by the successful 
demonstration of some significant 
milestone in terms of efficiency, ease 
of use/robustness, or accuracy. 

8 

Actual system completed and 
qualified through test and 
demonstration 

Technology has been proven to work in its final 
form and under expected conditions. In almost 
all cases, this TRL represents the end of true 
system development. Examples include 
developmental test and evaluation of the 
system in its intended weapon system to 
determine if it meets design specifications. 

Application of capability (beyond 
demonstration) by independent 
organizations. This implies sufficient 
robustness for use (value achieved 
exceeds investment required) 

9 

Actual system proven through 
successful mission operations 

Actual application of the technology in its final 
form and under mission conditions, such as 
those encountered in operational test and 
evaluation. Examples include using the system 
under operational mission conditions. 

Routine/expected use of capability by 
multiple organizations. OR Acceptance 
of results by multiple teams 

 


